
Computational content of the Axiom of Univalence

Thierry Coquand (j.w.w. Marc Bezem and Simon Huber)

Bern, September 11, 2013



Constructive semantics of Univalence

The Axiom of Univalence

A strengthening of Church’s axiom of extensionality in simple type theory

Two forms of this axiom 10αβ, function extensionality, and 10o

10o states that two propositions are logical equivalent if, and only if, they are
equal

10o is not taken as an axiom in Church’s original paper

We remark, however, on the possibility of introducing the additional axiom
of extensionality, p ≡ q ⊃ p = q, which has the effect of imposing so broad
a criterion of identity between propositions that they are in consequence only
two propositions, and which, in conjunction with 10αβ, makes possible the
identification of classes with propositional functions
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Constructive semantics of Univalence

Equivalent Types

Voevodsky formulated a strengthening of this axiom of extensionality, stating
roughly that two equivalent types are equal

He also shows how to formulate uniformely in dependent type theory a notion
of equivalence which generalizes

-logical equivalence of propositions

-bijection between sets

-equivalence of groupoids, . . .
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Constructive semantics of Univalence

The Axiom of Univalence

The axiom implies (in dependent type theory) that two isomorphic algebraic
structures are equal (P. Aczel, T.C. and N.A. Danielsson) and that two equivalent
categories are equal (M. Shulman)

But this is an axiom

How to justify it?
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Constructive semantics of Univalence

Explanation of Extensionality

Takeuti (1953) Gandy (1956)

explain the axiom of extensionality (both for propositions and for functions)

For propositions, the natural idea is to define equality as logical equivalence

This idea is present in Russell The Theory of Implications, 1906

For functions, one defines the equality by induction of the type

Can we generalize this to Dependent Type Theory?

4



Constructive semantics of Univalence

Explanation of Extensionality

One can present this explanation of extensionality as follows

First we interpret a type as a collection with a relation

There is a natural notion of function space (logical relation) where

two functions are related if they send related input to related output

One shows that these operations only define equivalence relations

provided we start from equivalence relations at base types

Collection with equivalence relation = Bishop’s notion of set a.k.a setoids
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Constructive semantics of Univalence

Explanation of Extensionality

We generalize this method

Collection with (reflexive) relation → cubical set

Equivalence relation → cubical set satisfying the Kan condition
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Constructive semantics of Univalence

Cubical sets

We have points, lines, square, cubes, . . .

Two operations

-we can take the faces (semi-cubical sets)

-we have degeneracies: any point gives a constant line, any line gives a
“constant” square (constant in one direction), and so on

The face operations are clear; the degeneracy operations are more subtle

They correspond to a generalization of the notion of reflexive relations
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Constructive semantics of Univalence

Identity Types

Using the degeneracy operations we have a natural interpretation of the
identity type

Given two points a and b of a cubical set X one can define a cubical set
corresponding to Y = IdX a b

-the points of Y are lines a→ b in X

-the lines of Y are squares a → b in X where a (resp. b) point of Y ,
degenerate line from a (resp. b) in X

-the squares of Y are cubes a → b of X where a (resp. b) line of Y ,
degenerate square from a (resp. b) in X, and so on
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Constructive semantics of Univalence

Kan condition, classically

Classically, the Kan condition is simply that

any open box can be filled

If we restrict ourselves to points, and lines we recover symmetry and transitivity
(given that we already have reflexivity)

So, this notion is a remarkably simple generalization of the notion of
equivalence relation (Kan, 1955)
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Constructive semantics of Univalence

Recovering symmetry and transitivity
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Constructive semantics of Univalence

Kan condition, classically

Considering only points and lines, we get equivalence relations à la Bishop

With squares, we get groupoids

With cubes, we get 2-groupoids

. . .
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Constructive semantics of Univalence

Kan condition, classically

It will be convenient to think of the Kan filling operation as a combination of

-one composition which produces the missing face of a given open box

-one filling operation which fills the closed box
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Constructive semantics of Univalence

Kan condition, classically

It is rather direct that IdX a b satisfies the Kan condition whenever X satisfies
the Kan condition

We can associate to any Kan cubical set a group π1(X, a) in a purely
combinatorial way, and then define π2(X, a) = π1(IdX a a, 1a), π3(X, a), . . .

This seems to be the simplest way for a combinatorial definition of homotopy
groups (and was essentially Kan’s original approach)
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Constructive semantics of Univalence

Maps of Kan cubical sets

If A and B are two Kan cubical sets a morphism f : A → B is a map of
cubical set

We don’t require any commutation with the Kan filling operation

If A and B are groupoids we obtain a notion of weak functor A→ B

It preserves strictly identity but only compositions in a weak way
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Constructive semantics of Univalence

Kan condition, classically

Effectivity problem: to prove closure under exponentiation of the Kan condition
requires decidability of degeneracy

For a related issue, a Kripke counter-model shows that the simple Kan filling
condition cannot work in a constructive framework if we want to interpret type
theory (M. Bezem and T.C.)

So we need to refine this condition

How? We first need to understand better the notion of degeneracy
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Constructive semantics of Univalence

Cubical sets, reformulated

We want a simple formal representation of the (topological) intuition of points,
lines, squares, cubes, . . .

We give such a representation and then refine the Kan condition in this
framework, in such a way that all operations become effective
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Constructive semantics of Univalence

Cubical sets, reformulated

We start from the trihedral picture

x

y

z

In a cubical set we can form lines l(x) and squares s(x, y) and cubes c(x, y, z)
using the directions x, y, z
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Constructive semantics of Univalence

Cubical sets, reformulated

Given a square s(x, y) we can

-consider faces s(0, y), s(1, y), s(x, 0), s(x, 1)

-consider vertices s(0, 0), s(0, 1), s(1, 0), s(1, 1)

-build the degenerate cube s′(x, y, z) = s(x, y) by adding a new variable z

This “explains” the notion of degeneracy: we add variables

In general we have a set of I-cubes for any finite set I of directions
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Constructive semantics of Univalence

Cubical sets, reformulated

More precisely, we introduce the following category C

We fix a countable sets of names x, y, z, . . . distinct from 0, 1

A name should be thought of as an abstract notion of direction

An object of C is a finite set of names

A morphism I → J is a set map I → J ∪ {0, 1} which is injective on its
domain, i.e. if i0 6= i1 and f(i0), f(i1) in J then f(i0) 6= f(i1)

This represents a substitution: we can assign the value 0 or 1 or do renaming
or add new variables
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Constructive semantics of Univalence

Cubical sets, reformulated

Definition: a cubical set is a functor C → Set.

Definition: If X is a cubical set, an I-cube of X is an element of X(I).

A cubical set X is a presheaf on the category Copp

Via Yoneda, the object I can be thought of as a cubical set

We may think of this cubical set as a formal version of [0, 1]I

An I-cube is then a formal version of a map [0, 1]I → X

Cf. singular cubical complexes
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Constructive semantics of Univalence

Cubical sets, reformulated

θ(z = 1)

θ

face map

α

α

α

degeneracy map
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Constructive semantics of Univalence

Example: the unit interval

We have two points a and b and a line l(x) : a→x b

a, b and l(x) are primitive objects (constructors)

In each direction x we have three lines

a(x) = a : a→ a b(y) = b : b→ b l(x) : a→ b

In each directions x, y we have four squares

a(x, y) = a, b(x, y) = b, u(x, y) = l(x), v(x, y) = l(y)

and so on

The unit interval is a cubical set, which does not satisfy the Kan condition
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Constructive semantics of Univalence

Kan filling conditions, reformulated

Let (u, ~u) be an open box, e.g.

(ux0, u
y
0, u

y
1) with ux0(y = i) = uyi (x = 0)

We have

one composition operation X+(u, ~u) which closes the box and

one filling operation X ↑ (u, ~u) which fills the box

23



Constructive semantics of Univalence

Kan filling conditions, reformulated

X ↑ (ux0, u
y
0, u

y
1)(x = 0) = ux0

X ↑ (ux0, u
y
0, u

y
1)(y = 0) = uy0

X ↑ (ux0, u
y
0, u

y
1)(y = 1) = uy1

X ↑ (ux0, u
y
0, u

y
1)(x = 1) = X+(ux0, u

y
0, u

y
1)

We allow u, ~u to depend on more variables than only x and y and we require
that the composition and filling operations commute with renaming and addition
of variables
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Constructive semantics of Univalence

Kan filling conditions, reformulated

Geometrically addition of variables corresponds to new filling operations

In this example we have added the y direction

The faces of this filling should be the filling of the faces

The degeneracy of a filling should be the filling of the degeneracy
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Constructive semantics of Univalence

Kan filling conditions, reformulated

We define a Kan cubical set to be a cubical set with composition and filling
operations that commute with renaming and addition of variables

This extra condition is natural for this notion of cubical sets

Adding this extra condition solves the effectivity problem

We get a(n effective) model of dependent type theory, interpreting a type by
a Kan cubical set
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Constructive semantics of Univalence

Kan filling conditions, reformulated

Classically, from any simple Kan filling operations, we can get other filling
operations that satisfy the stronger uniformity condition

In order to define these new operations, we have to rely on the decidability of
degeneracy
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Constructive semantics of Univalence

Universe

What should be an equality A→ B between two types A and B?

We require to have a “heterogeneous” notion of lines a→ b where a point of
A and b point of B

and a notion of squares p→ q where p line of A and q line of B, . . .

This makes sense if A and B are only cubical sets and this represents a relation
between A and B

In order to get an equality A → B we furthermore require that this
heterogeneous notion of line, square, cube . . . also satisfies the Kan condition

(Equivalently, this is a Kan fibration over the unit interval)
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Constructive semantics of Univalence

Example for Bishop sets

What is an equality A→ B?

The Kan condition tells us that if a→ b, a→ a′, b→ b′ then a′ → b′

but also that if a→ b, a′ → b′, b→ b′ then a→ a′ and so on

All these conditions tell us exactly that this equality is the

graph of an isomorphism

between the (Bishop) sets A and B

This is the essence of univalence

An equality between two types is the graph of an equivalence
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Constructive semantics of Univalence

Example for (weak) groupoids

In this case, an equality A→ B correspond to the “graph” of an equivalence
between A and B (seen as categories)
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Constructive semantics of Univalence

Universe

We have defined a notion of lines A→ B between types

Similarly we can define a notion of squares, cubes, . . . between types

This defines a large cubical set

We have a natural notion of composition, which generalizes the notion of
composition of relations, and preserve the Kan filling property

It can be shown that this large cubical set satisfies the Kan condition
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Constructive semantics of Univalence

Kan completion

If X is a cubical set, we want to “complete” it to a Kan cubical set

For this we add operations X+, X ↑, X−, X ↓ in a free way, i.e. considering
these operations as constructors

The uniformity condition defines what should be the degeneracies of these
elements

We get in this way a new cubical set

By construction, this cubical set satisfies the Kan condition
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Constructive semantics of Univalence

Defining S1, S2, . . .

The same idea can be used to define S1

We add one point a and one line l : a→ a as constructors

We close it by the composition and filling operations

This satisfies the required induction principle of S1
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Constructive semantics of Univalence

Defining inh X

Similarly we define inh X for any Kan cubical set X

This is a proposition stating that X is inhabited

We add a constructor αx(a0, a1) connecting formally along the direction x
any two I-cubes a0 and a1 (with x not in I)

αx(a0, a1)(x = 0) = a0 αx(a0, a1)(x = 1) = a1

We define degeneracy of these new elements by commutation with substitution

This satisfies the required induction principle of inh X: if Y is a proposition
and X → Y then we have inh X → Y
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Constructive semantics of Univalence

Axiom of Description

(∃x : A)B = inh (Σx : A)B

If (Σx : A)B is a proposition we have

(∃x : A)B → (Σx : A)B

This is a generalization of the axiom of description

If A set, B proposition and (∃!x : A)B then (Σx : A)B is a proposition

Both Russell and Church use the symbol ι to represent this as an operation

We have just given a justification of this axiom, different from Russell’s one
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Constructive semantics of Univalence

What is a Kan Fibration

We want to represent the notion of family of types A ` B

For each I-cube α of A we have a corresponding set Bα of cubes above α

If v in Bα and f : I → J is a substitution then vf is in Bαf

We say that A ` B is a Kan fibration if we have composition operations
Bα+, Bα− and filling operations Bα ↑, Bα ↓ above α
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Constructive semantics of Univalence

What is a Kan Fibration

In particular if α is a line connecting α0 and α1 we get a transfer map

Bα0 → Bα1

which expresses Leibniz’s law of substitution

Because of the uniformity condition this defines a map of cubical set

Without the uniformity condition, this cannot be done effectively
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Constructive semantics of Univalence

What is a Kan Fibration

This generalizes the notion of family of sets in Bishop’s framework

Cf. Exercice 3.2 in Bishop’s book

In the first edition, only families over discrete sets are considered while the
Bishop-Bridges edition presents a more general definition, due to F. Richman

E.g. IdX defines a Kan fibration over X ×X whenever X is a Kan cubical set
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